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Oxidative addition of G-X (X = halide) bonds to late transition =~ Scheme 1

metal centers is a well-studied process, yet its microscopic reverse, Me» 1 @/F
carbon-halide reductive elimination, is extremely rarBeing r/th
thermodynamically uphill, this reaction, nevertheless, often plays K/lez 1\@

an important role in catalysis, as illustrated in the Monsanto {;3” @(F /

methanol carbonylation procesSince the formation of a carben P)Pt“"‘

halogen bond is usually suppressed when alternative pathways, such! \Ckp

as G-C reductive elimination, are available, very few examples fo-e | Roof

of the C-X reductive elimination from the high oxidation state 2:§3§£Z§2;::§=?;§ ’ EP/PKI + = )—F
metal centers have been reported, with most of them restricted to (g% "2 80" ol TR

the s C—X bond-forming reaction:® In these reactions, the-X (€) dmpe (n=1, R=Me) 2a-d

reductive elimination can be viewed as the reverse step of\iBe S

S L . . . Scheme 2
oxidative addition mechanis#$ With sp? and sp-hybridized carbon .
substituents, the €X reductive elimination is generally not Br-F R, Br F R, Br
observed, the €C reductive elimination being by far the dominant ~_§ o i P | ABr
pathway? This paper reports the competitive arylalide and aryt LP/P‘ [‘/ \Q CP/]L (P

Bt
T@@F
F

+ 6a,b and 7a,b, ca. 20% total 60% (c), 15% (d) 40% (c), 85% (d)

aryl reductive elimination from a series of-(lP)Pt(I\V) complexes
that show a remarkable selectivity dependence on the ligand’s bite
angle.

We recently reported that the addition of Xet6 Pt(ll) diaryl Heating4 at 90°C for days gave the €C reductive elimination
complexes bearing the chelating phosphine ligands (dcpp, dppp,products.
or dppe) instantaneously produced the difluoro Pt(ll) complexes  Considering, however, the high kinetic lability and often
together with the product of €C reductive eliminatiofi As the unpredictable behavior of iodides in organometallic chemistry,
same reaction with the Pt(Il) complexes bearing monodentate we decided to investigate the reactivity of completes-e with
phosphines gave stable Pt(1V) difluoro compleXese considered  Br,. Surprisingly, upon the addition of bromine to solutionslaf
that, in the former case, the- reductive elimination might have  or 1b in different solvents (THF, toluene, acetone, or .CH),
occurred from a cationic Pt(IV) intermediate, at a step prior to the instantaneous aryl-bromide reductive elimination was observed
formation of the difluoro complexes. Since little information is  together with the formation of dppePt(Ar)B5d) and dcpePt(Ar)-

5a,b la-d 6 7

available with regard to the formation of {fP)Pt(ArpX, com- Br (5b), respectively (Scheme 2). Small amounts of the Pt(IV)
plexes, we sought to study the mechanism of dihalogen oxidative oxidative addition products (bothans- andcis-isomers6a,b and
addition to square planar Pt(Il) diaryl complexes. 7ab, respectively, in an approximately 1:2 ratio depending on the

Upon the addition of a solution of to a series of the chelating  conditions), as well as Pt(ll) dibromid@&gb, the product of the
Pt(11) diaryl complexeda—d, facile formation of the aryl iodo Pt- reaction betweerbab and Bg) were also observed. No biaryl
(I1) complexes2a—d was observed, and aryl iodide was obtained formation was detected in these reactions. On the other hand, the
as an organic product. The reaction proceeded smoothly, even ataddition of 1 equiv of Bs to either1c or 1d gave stable Pt(IV)
very low temperatures, in different solvents, and no competition complexes §c,d and 7c,d), which showed no ArBr reductive
from C—C reductive elimination was observed. These results elimination at room temperature or below (Scheme 2). The ratio
contrast with the exclusive €C reductive elimination observed  between the isomers varied slightly depending on the solvent, with
for the vinyl-vinyl (sp?—sp?)? and ethyny-ethynyl (sp-sp)© Pt- the polar solvents (THF vs GIIl, or benzene) giving higher
(IV) systems, where no €l reductive elimination was detected percentage of théransproduct!* When these complexes were
and no such pathway was calculated in the DFT stutfigsit is heated for several hours in benzene or THF, only -aayll
noteworthy that only when the small dmpe ligand was used was reductive elimination was observed, and the corresponding Pt(ll)
the formation of a stabl#ans-Pt(IV) complex3 observed at room dibromides 8c,d) were obtained as the metal-containing species.
temperaturé! The 31P NMR spectrum showed a characteristic The reaction was significantly faster in the more polar solvent THF.
signal at—24.37 ppm (about 40 ppm upfield from the starting Addition of an excess of tetrabutylammonium bromide (TBA-Br)
material) with a very lowdpp of 1200 Hz!? At 50 °C in benzene to solutions ofc,d and7c,d in toluene or THF significantly slowed
this compound underwent smooth conversion into the more stablethe reductive elimination reaction (Figure 1), suggesting that initial
cis-product4 (Scheme 1). These observations suggest that the transPt—Br bond cleavage facilitates this reaction. Unlike theé sp

complex, such as, is the kinetic product of the Xoxidative system?® the direct anion attack at an %parbon atom is not
addition to (P-P)Pt(Ar), and results from the,@-type mechanism possible, and aryl bromide formation is not aided by the presence
involving cationic Pt(lV) intermediates. of TBA-Br. Similar to the reaction with,| 1ereacted with Bj to
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9 biaryl and8a,b. Thus, the added bromide shuts the regeneration of
85" | from 6, shifting the reaction from the €Br to the G-C
®a elimination®

] 4 ® e ° Although the detailed mechanistic studies are still underway, it
. = + is clear that the aryl-halide reductive elimination can compete
5 6 N favorably with the more common-€C reductive elimination. The
§ - 4 reaction course appears to be extremely sensitive to even minor
8§ . changes in the ligand's structure and reaction media.
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